Let the length of the rectangle be "x" and the width be "y".
We know the formula for the area of a rectangle:
![\begin{gathered} A=\text{length}*\text{width} \\ A=xy \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cels7wdibixl358mdwys2s47dq8xhcedix.png)
We know the formula for the perimeter of a rectangle:
![\begin{gathered} \text{Perimeter}=2(length+width) \\ 56=2(x+y) \\ (56)/(2)=x+y \\ x+y=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uy7okwerjni69if2pl49i5vfo9b03yda5h.png)
Let's solve for "x" in the perimeter equation to get:
![x=28-y](https://img.qammunity.org/2023/formulas/mathematics/college/xfof9l0csfev19h8g2awxtiz88jwiec6th.png)
Now, we will substiute this into the Area equation. Shown below:
![\begin{gathered} A=xy \\ A=(28-y)y \\ A=28y-y^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h491hjgjvfa1wwresd07k9shck4qe8bfh3.png)
To find the maximum area, we need to differentiate "A" equation and set it equal to 0 to find the value of "y" for which "A" is maximum. The steps are shown below:
![\begin{gathered} A=28y-y^2 \\ A^(\prime)=28-2y \\ 28-2y=0 \\ 2y=28 \\ y=(28)/(2) \\ y=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u3z1uvxmvdldxt4nkw31j431qe4ba8ttjy.png)
The corresponding "x" value is:
![\begin{gathered} x=28-y \\ x=28-14 \\ x=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wi1n3nwwys88vxjen0lxj1l22mr66yswwo.png)
Thus, the rectangle with the maximum area is the one with dimensions:
![\begin{gathered} \text{Length}=14yd \\ \text{Width}=14yd \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rwvc2vds1qgqx0ayzpnycwrq4sy029t9qh.png)