Statement Problem: Let;
![\sin \theta=(4)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/lzwnge7tch6vicozensvj7l2xrwp2qnch1.png)
Find the exact value of;
![\cos \theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/yz7a6gjx33l305qrjs6meenhdwk023lioy.png)
Solution:
In trigonometry, the ratio of the sine is defined as;
![\sin \theta=(opposite)/(hypotenuse)](https://img.qammunity.org/2023/formulas/mathematics/college/7y7e28xapk8386smwpubmzf1mb2zvvvjzm.png)
Thus,
![\text{opposite}=4,\text{ hypotenuse=9}](https://img.qammunity.org/2023/formulas/mathematics/college/yt85cyc3kc50fnqlbloiua2u1gxhjwdm1j.png)
By Pythagoras theorem, the square of the longest side (hypotenuse) is the sum of squares of the opposite and the adjacent sides.
![\begin{gathered} (\text{hypotenuse)}^2=(\text{opposite)}^2+(\text{adjacent)}^2 \\ (\text{adjacent)}^2=(\text{hypotenuse)}^2-(\text{opposite)}^2 \\ (\text{adjacent)}^2=9^2-4^2 \\ (\text{adjacent)}^2=81-16 \\ (\text{adjacent)}^2=65 \\ \text{adjacent}=\sqrt[]{65} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vuwwd3ywih7dluje9k9wupsjfsp4axfzoo.png)
The ratio of the cosine is defined as;
![\begin{gathered} \cos \theta=(adjacent)/(hypotenuse) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dfdvthuxsxgnxmvpe6grwonctz8woncmjq.png)
Hence,
![\cos \theta=\frac{\sqrt[]{65}}{9}](https://img.qammunity.org/2023/formulas/mathematics/college/tueiia4vgmg9bo5dr9i62ydid6nwwbqe49.png)