84.1k views
4 votes
Graph the function f(x) =
\sqrt[3]{x + 4 - 2?}by adjusting the moveable point. You can only graph integer points. For example, you cannot plot the point (-1,1/4)

Graph the function f(x) = \sqrt[3]{x + 4 - 2?}by adjusting the moveable point. You-example-1

1 Answer

7 votes

We can find some points and graph the function. Due, the function has a term with a cube root, we can choose x-values to get an integer number, for example:


\begin{gathered} f(x)=\sqrt[3]{x+4}-2 \\ \text{For x=-4,} \\ f(-4)=-2\Rightarrow P_1(-4,-2) \\ x=-3\to f(-3)=\sqrt[3]{-3+4}-2=\sqrt[3]{1}-2=-1\Rightarrow P_2(-3,-3) \\ x=-5\to f(-5)=\sqrt[3]{-1}-2=-3\Rightarrow P_3(-5,-3) \\ x=4\to f(4)=\sqrt[3]{4+4}-2=\sqrt[3]{8}-2=2-2=0\Rightarrow P_4(4,0) \end{gathered}

With the four points above we can graph f(x), so:

Graph the function f(x) = \sqrt[3]{x + 4 - 2?}by adjusting the moveable point. You-example-1
User TheTypan
by
3.0k points