The given problem can be exemplified in the following diagram:
To determine the velocity when the mass is located at point 2 we will consider that the change in gravitational potential energy from 1 to 2 is equal to the kinetic energy at 2, therefore, we have:
![\Delta U=K](https://img.qammunity.org/2023/formulas/physics/college/1oxojf6yrkiampgbj8iot2cmlevxuv9cmb.png)
Where:
![\begin{gathered} \Delta U=\text{ change in gravitational potential energy} \\ K=\text{ kinetic energy} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fvnvm00xqt3il7i5towaescq40zx44a0by.png)
Now, we use the following formula for the gravitational potential energy:
![\Delta U=mgh](https://img.qammunity.org/2023/formulas/physics/college/f0cv3hhsm34kdzzormikp7ozuyso2i7ke0.png)
Where:
![\begin{gathered} m=\text{ mass} \\ g=\text{ acceleration of gravity} \\ h=\text{ change in height} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/52z8xznox4n2nyaam9noobsn1ha3c8a0gm.png)
The kinetic energy is given by:
![K=(1)/(2)mv^2](https://img.qammunity.org/2023/formulas/physics/college/89ts55elkus9wrqy6baloxb543n3yrist9.png)
Now, we substitute the formulas:
![mgh=(1)/(2)mv^2](https://img.qammunity.org/2023/formulas/physics/college/1se0fg6k7qlfykvve9jo3u1vlgahqezpdl.png)
We can cancel out the mass "m":
![gh=(1)/(2)v^2](https://img.qammunity.org/2023/formulas/physics/college/vx4wbb9zu2iqmomuacdl0u67j230cps2dw.png)
Now, we solve for the velocity by multiplying both sides by 2:
![2gh=v^2](https://img.qammunity.org/2023/formulas/physics/college/zsou81p9syyu65xd8zllx2x9nr0htjdj93.png)
Now, we take the square root to both sides:
![\sqrt[]{2gh}=v](https://img.qammunity.org/2023/formulas/physics/college/n8m0ru8dajew3fdugx4nv2gpwp8tzdtv4c.png)
Now, we determine the height "h" using the following triangle:
We notice that the adjacent side of the triangle plus the height "h" is equal to the length of the pendulum, therefore, we have the next relationship:
![x+h=2](https://img.qammunity.org/2023/formulas/physics/college/q1qett1g1dven2jiigw3zfah11z6sc78nc.png)
We solve for "h" by subtracting "x" from both sides:
![h=2-x](https://img.qammunity.org/2023/formulas/physics/college/i53odnw19dvi31vqqm9tfekgst9qjn585x.png)
Now, we determine the value of "x" by using the function cosine:
![\cos 33=(x)/(2)](https://img.qammunity.org/2023/formulas/physics/college/yviq0nknuaj3mj7rqd4jeyhh0c5krcog4z.png)
Now, we multiply both sides by 2:
![2\cos 33=x](https://img.qammunity.org/2023/formulas/physics/college/fpjf2pgjw8zs88j72ddjqiyndqvbh3g342.png)
Now, we substitute the value of "x":
![h=2-2\cos 33](https://img.qammunity.org/2023/formulas/physics/college/htf9jdhzx0xd6vvtklvgf21vllzrnt0n3m.png)
Solving the operations:
![h=0.32](https://img.qammunity.org/2023/formulas/physics/college/37z51u7jmfoo4bduv3u50qsdqapjnwj15l.png)
Therefore, the change in height is 0.32 meters. Substituting in the formula for the velocity we get:
![\sqrt[]{2(9.8(m)/(s^2))(0.32m)}=v](https://img.qammunity.org/2023/formulas/physics/college/o5m801n8pe4pfdcacjmw4qh501vmfe6uks.png)
Solving the operations:
![2.5(m)/(s)=v](https://img.qammunity.org/2023/formulas/physics/college/rifvk0cf70mila4z32wj2ceqd5imkdild1.png)
Therefore, the velocity of the mass is 2.5 m/s.