Given:
![y=3x^2+30x+71](https://img.qammunity.org/2023/formulas/mathematics/college/jjlgnuagxrk3ez97q4lfdql95zmmwkck9j.png)
To find:
Rewrite the equation using the completing the square method.
Step-by-step explanation:
It can be written as,
![\begin{gathered} y=3(x^2+10x)+71 \\ =3(x^2+10x+5^2-5^2)+71 \\ y=3[(x^2+10x+5^2)-25]+71 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qghev29hnzvq89urftlmiag91i26mepv68.png)
Using the algebraic identity,
![a^2+2ab+b^2=(a+b)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/f5ygvsqcbvnk0znmz8pjkqdwiyl3jl3goo.png)
We can write,
![\begin{gathered} y=3[(x+5)^2-25]+71 \\ y=3(x+5)^2-75+71 \\ y=3(x+5)^2-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/luftnuhlyhhdbo5nabi6m69ec4fohxknik.png)
Therefore, the equation becomes,
![y=3\left(x+5\right)^(2)-4](https://img.qammunity.org/2023/formulas/mathematics/college/qe2z4yv6145kebdfl8kfgjyg2xv58mz166.png)
It is of the form,
![y=a\left(x-h\right)^2+k,(h,k)\text{ is the extreme value of the function}](https://img.qammunity.org/2023/formulas/mathematics/college/l2hmgfi33aoqhhjv3cpvqu01knx8xncdio.png)
So, the extreme value of the equation is at
![(-5,-4)](https://img.qammunity.org/2023/formulas/mathematics/college/9ijh8aqd38ap27wrhdzxzefxfkazfgoe78.png)
Final answer:
The equation is written as,
![y=3\left(x+5\right)^(2)-4](https://img.qammunity.org/2023/formulas/mathematics/college/qe2z4yv6145kebdfl8kfgjyg2xv58mz166.png)
The extreme value of the equation is at
![(-5,-4)](https://img.qammunity.org/2023/formulas/mathematics/college/9ijh8aqd38ap27wrhdzxzefxfkazfgoe78.png)