206k views
5 votes
This function has a local minimum at x= with output value: And a local maximum at x=With output value:

This function has a local minimum at x= with output value: And a local maximum at-example-1

1 Answer

4 votes

minimum:10

output :509

maximum:5

output: 634

Step-by-step explanation

Step 1

graph the function:

to do this, you need put values for x, and you will get a set of values for y, those formed pairs are the coordinates,

we can see, there are a minimun and a maximum

Step 2

find the minimum

To find the local minimum of any graph, you must first take the derivative of the graph equation, set it equal to zero and solve for


f(x)=2x^3-45x^2+300x+9

a) derivate


\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ \end{gathered}

To take the derivative of this equation, we must use the power rule


\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ f^(\prime)(x)=(2\cdot3)x^((3-1))-(45\cdot2)x^(2-1)+300x^((1-1))+9 \\ f^(\prime)(x)=6x^2-90x+300 \end{gathered}

solve for x by applying the quadratic formula


ax^2+bx+c=0\rightarrow6x^2-90x+300=0


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{replace} \\ x=\frac{-(-90)\pm\sqrt[]{90^2-4\cdot6\cdot300}}{2\cdot6} \\ x=\frac{90\pm\sqrt[]{8100-7200}}{12} \\ x=\frac{90\pm\sqrt[]{900}}{12} \\ x=(90\pm30)/(12) \\ so \\ x_1=(90+30)/(12)=(120)/(12)=10 \\ x_2=(90-30)/(12)=(60)/(12)=5 \end{gathered}

then, let's find the output when x=5


\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ f(5)=2\cdot5^3-45\cdot5^2+300\cdot5+9 \\ f(5)=250-1125+1500+9 \\ f(5)=634 \end{gathered}

so,infelection point is (5,634)

Step 3

Now, the output when x=10


\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ f(10)=2\cdot10^3-45\cdot10^2+300\cdot10+9 \\ f(10)=2000-4500+3000+9 \\ f(10)=509 \end{gathered}

inflection point (10,509)

Step 3

so, at x=5 and x=10 we have two inflection points, to know if those points are minimum we need to check the second derivate of the fucntion


\begin{gathered} f^(\prime)(x)=6x^2-90x+300 \\ f^{\prime^(\prime)}(x)=12x^{}-90 \end{gathered}

now, check if f''(x) is greater than zero

a)at x=5


\begin{gathered} f^{\prime^(\prime)}(x)=12x^{}-90 \\ f^{\prime^(\prime)}(5)=12\cdot5^{}-90 \\ f^{\prime^(\prime)}(5)=60-90=-30 \\ f^{\prime^(\prime)}(5)=-30 \end{gathered}

it is smaller than zero, it means (5,634) is a maximum

b)at x=10


\begin{gathered} f^{\prime^{}}^(\prime)(x)=12x^{}-90 \\ f^{\prime^{}\prime}(10)=12\cdot10-90 \\ f^{\prime^{}\prime}(10)=120-90 \\ f^{\prime^{}\prime}(10)=30 \end{gathered}

it is greater than zero, it means (10,509) is a minimum

I hope this helps you

This function has a local minimum at x= with output value: And a local maximum at-example-1
User NYCBilly
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories