minimum:10
output :509
maximum:5
output: 634
Step-by-step explanation
Step 1
graph the function:
to do this, you need put values for x, and you will get a set of values for y, those formed pairs are the coordinates,
we can see, there are a minimun and a maximum
Step 2
find the minimum
To find the local minimum of any graph, you must first take the derivative of the graph equation, set it equal to zero and solve for
![f(x)=2x^3-45x^2+300x+9](https://img.qammunity.org/2023/formulas/mathematics/high-school/1wxer0b8x1rtqv82oea71w8k30pw3b5htj.png)
a) derivate
![\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lmax2ztl2mq8gy123m026j9khb1qujpu27.png)
To take the derivative of this equation, we must use the power rule
![\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ f^(\prime)(x)=(2\cdot3)x^((3-1))-(45\cdot2)x^(2-1)+300x^((1-1))+9 \\ f^(\prime)(x)=6x^2-90x+300 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1wsuinmbhfy8smbatlbrrp21nbmth40uk5.png)
solve for x by applying the quadratic formula
![ax^2+bx+c=0\rightarrow6x^2-90x+300=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/akmifmklxztk3qnnqp23xboxn2idtlo8dw.png)
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{replace} \\ x=\frac{-(-90)\pm\sqrt[]{90^2-4\cdot6\cdot300}}{2\cdot6} \\ x=\frac{90\pm\sqrt[]{8100-7200}}{12} \\ x=\frac{90\pm\sqrt[]{900}}{12} \\ x=(90\pm30)/(12) \\ so \\ x_1=(90+30)/(12)=(120)/(12)=10 \\ x_2=(90-30)/(12)=(60)/(12)=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t292cy8zh8tv1uowjcqfnmyeppookd6mwe.png)
then, let's find the output when x=5
![\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ f(5)=2\cdot5^3-45\cdot5^2+300\cdot5+9 \\ f(5)=250-1125+1500+9 \\ f(5)=634 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tt1rcfrsjtgiivsoy7wh6nl2anpjvio6y1.png)
so,infelection point is (5,634)
Step 3
Now, the output when x=10
![\begin{gathered} f(x)=2x^3-45x^2+300x+9 \\ f(10)=2\cdot10^3-45\cdot10^2+300\cdot10+9 \\ f(10)=2000-4500+3000+9 \\ f(10)=509 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kkn28dn1xkx8fl3anwoz07h0y73e29aevy.png)
inflection point (10,509)
Step 3
so, at x=5 and x=10 we have two inflection points, to know if those points are minimum we need to check the second derivate of the fucntion
![\begin{gathered} f^(\prime)(x)=6x^2-90x+300 \\ f^{\prime^(\prime)}(x)=12x^{}-90 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/24wyz5onqe71f5u9k9crolhie522gjmp0d.png)
now, check if f''(x) is greater than zero
a)at x=5
![\begin{gathered} f^{\prime^(\prime)}(x)=12x^{}-90 \\ f^{\prime^(\prime)}(5)=12\cdot5^{}-90 \\ f^{\prime^(\prime)}(5)=60-90=-30 \\ f^{\prime^(\prime)}(5)=-30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/khu39yy4u7gxe5ll4elzrarhpb3raon4jn.png)
it is smaller than zero, it means (5,634) is a maximum
b)at x=10
![\begin{gathered} f^{\prime^{}}^(\prime)(x)=12x^{}-90 \\ f^{\prime^{}\prime}(10)=12\cdot10-90 \\ f^{\prime^{}\prime}(10)=120-90 \\ f^{\prime^{}\prime}(10)=30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/12kdvv9ugmya0xckizkz0d86n69za4l8rk.png)
it is greater than zero, it means (10,509) is a minimum
I hope this helps you