195k views
4 votes
If this is the right answer I’m bad at math I never understand it

If this is the right answer I’m bad at math I never understand it-example-1

1 Answer

3 votes

The given triangle is a right-angled triangle


FE=12\text{units and m}\angle F=35^o\text{.}
\text{Here m}\angle E=90^o

Using the triangle sum property, we get


m\angle D+m\angle F+m\angle E=180^o_{}
\text{ Substitute }\angle mF=35^o\text{ and m}\angle E=90^o,\text{ we get}


m\angle D+35^o+90^o=180^o


m\angle D+125^o=180^o

Adding -125 degrees on both sides, we get


m\angle D+125^o-125^o=180^o-125^o
m\angle D=55^o

Recall the formula for cosine


\text{cos}\theta=\frac{Adjacent\text{ side}}{\text{Hypotenuse}}

Substitute adjacent side =FE=12 units and Hypotenuse =FD and angle is 35 degree.


\cos 35^o=(12)/(FD)

Taking reciprocal and multiplying 12 on both sides.


(12)/(\cos 35^o)=(FD)/(12)*12


FD=(12)/(\cos35^o)
\text{Use }\cos 35^o=0.819.


FD=(12)/(0.819)=14.65\text{ units }

Recall the formula sine.


\sin \theta=\frac{opposite\text{ side}}{\text{hypotenuse}}

Substitute opposide side=DE and Hypotenuse =FD=14.65 units and angle is 35 degrees.


\sin 35^o=(DE)/(14.65)
Use\sin 35^o=0.573


0.573=(DE)/(14.65)
DE=0.573*14.65=8.39=8.40

Hence the required answer is


m\angle D=55^o\text{ , DE=8.40 units and DF=14.65 units.}

Hence the option B is correct.

User Arafat Khan
by
4.1k points