The monthly growth rate of the tumor is:
![r=2](https://img.qammunity.org/2023/formulas/mathematics/college/k7xus07de1ohwdjif640c2t6kmy2esooox.png)
Then, we can formulate the growth model knowing that the initial size is 6 cells, using an exponential model:
![S(t)=S_0\cdot r^(t/5)](https://img.qammunity.org/2023/formulas/mathematics/college/31qeyilfvqamirvl8e5j5ogoa6h2roryhb.png)
Where S(t) is the size of the tumor at month t, S₀ is the initial size, and r is the growth rate per 5 months. Using the corresponding values:
![S(t)=6\cdot2^(t/5)](https://img.qammunity.org/2023/formulas/mathematics/college/4w01qcjzjm5x8jkh6fxrjjhmlpfy3hzq4p.png)
In one year, we have 12 months, so t = 12. Using the model:
![\begin{gathered} S(12)=6\cdot2^(12/5)=31.67 \\ \Rightarrow S(12)=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xorn5ltkkev1h6dnu0qxuxb7x6m5hdr9ft.png)
In 7 years, there are 7*12 = 84 months, so t = 84:
![\begin{gathered} S(84)=6\cdot2^(84/5)=684628.82 \\ \Rightarrow S(84)=684629 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g7z42xrlv5lof53v9i0gt9nskkz6rg66uz.png)
There are 32 cells after 1 year, and 684629 cells after 7 years.