Answer:
• 2.75 astronomical units (AU) in the direction of positive x
,
• 0.265 AU in the direction of positive y
,
• 0.135 AU in the direction of positive z.
Explanation:
First Asteroid
• 2.8 astronomical units (AU) in the direction of positive x
,
• 0.3 AU in the direction of positive y
,
• 0.15 AU in the direction of positive z.
![\implies\text{Asteriod 1: )}(x_1,y_1,z_1)=(2.8,0.3,0.15)](https://img.qammunity.org/2023/formulas/mathematics/college/tpwhpumcs3vd4uxwikzok23jt4tm9r38ir.png)
Second Asteroid
The position of the asteroids is given below:
• 2.7 AU in the direction of positive x
,
• 0.23 AU in the direction of positive y
,
• 0.12 AU in the direction of positive z.
![\implies\text{Asteriod 2: }(x_2,y_2,z_2)=(2.7,0.23,0.12)](https://img.qammunity.org/2023/formulas/mathematics/college/vva4hs87wgten7mlgkcf1lspf4peeddhox.png)
To find the point where they collide, we use the given midpoint formula.
![\mleft((x_(1)+x_(2))/(2),(y_(1)+y_(2))/(2),(z_(1)+z_(2))/(2)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/r3eyymsbi5y7k1njmzr21qg51xyio8f2c0.png)
Substitute the values:
![\begin{gathered} \text{Midpoint}=\mleft((2.8+2.7)/(2),(0.3+0.23)/(2),(0.15+0.12)/(2)\mright) \\ =\mleft((5.5)/(2),(0.53)/(2),(0.27)/(2)\mright) \\ =\mleft(2.75,0.265,0.135\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mxqtvinbshao3v77u8oue1x8o6lrhwphgt.png)
Thus, in this coordinate system, the asteroid will collide at:
• 2.75 astronomical units (AU) in the direction of positive x
,
• 0.265 AU in the direction of positive y
,
• 0.135 AU in the direction of positive z.