202k views
3 votes
Solving a Quadratic-Quadratic SvatOfChoose the solution(s) of the following system of equations:x² + y² = 6x2 - y = 6+no solution(6.0)(5.1)(5.-1)

Solving a Quadratic-Quadratic SvatOfChoose the solution(s) of the following system-example-1

1 Answer

4 votes

Answer


\begin{gathered} (\sqrt[]{6},0) \\ (-\sqrt[]{6},0) \\ (\sqrt[]{5},-1) \\ (-\sqrt[]{5},-1) \end{gathered}

Step-by-step explanation

Given quadratic-quadratic system of equation:


\begin{gathered} x^2+y^2=6----i \\ x^2-y=6----ii \end{gathered}

From (i):


x^2=6-y^2----iii

From (ii) also:


x^2=6+y----iv

(iii) = (iv) implies:


\begin{gathered} 6-y^2=6+y \\ Combine\text{ the like terms} \\ y^2+y=6-6 \\ y^2+y=0 \\ By\text{ factorization} \\ y(y+1)=0 \\ \text{Either }y=0\text{ or }y+1=0 \\ y=0\text{ or }y=-1 \end{gathered}

To solve for the values of x, substitute y = 0 and y = -1 into (iv):


\begin{gathered} \text{Recall (iv)} \\ x^2=6+y \\ \text{For }y=0 \\ x^2=6+0 \\ x^2=6 \\ \text{Take the square root of both sides} \\ x=\pm\sqrt[]{6} \\ \therefore when\text{ }y=0,\text{ }x=\pm\sqrt[]{6}\text{ } \\ \text{Hence, }(\pm\sqrt[]{6},0) \\ \\ \text{For For }y=-1 \\ x^2=6+(-1) \\ x^2=5 \\ \text{Take square root of both sides} \\ x=\pm\sqrt[]{5} \\ \therefore when\text{ }y=-1,\text{ }x=\pm\sqrt[]{5} \\ Hence,\text{ }(\pm\sqrt[]{5},-1) \end{gathered}

Therefore the solution of the system of equations are:


\begin{gathered} (\sqrt[]{6},0) \\ (-\sqrt[]{6},0) \\ (\sqrt[]{5},-1) \\ (-\sqrt[]{5},-1) \end{gathered}

Solving a Quadratic-Quadratic SvatOfChoose the solution(s) of the following system-example-1
User Richardpringle
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories