Given:
The mass of the ball is
![\begin{gathered} m=221\text{ g} \\ =0.221\text{ kg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/loh0a0ms5lk75uizhh94aa1h6hm1wpjxj3.png)
The initial height of the ball is
![h=39.8\text{ m}](https://img.qammunity.org/2023/formulas/physics/high-school/2ambnwoxh1rsig1cibixxogg5b1h2o0do3.png)
The initial speed of the ball is
![v_i=36.7\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/high-school/mggq22r60m5ywxi5shh7jqbxeal3jcdw5n.png)
To find:
the impact speed of the ball when it strikes the ground
Step-by-step explanation:
The initial potential energy of the ball is
![\begin{gathered} (PE)_i=mgh \\ =0.221*9.8*39.8 \\ =86.2\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/dplgomgcpdw3hsub1ogmeoj0e3nc7h99be.png)
The initial kinetic energy is
![\begin{gathered} (KE)_i=(1)/(2)mv_i^2 \\ =(1)/(2)*0.221*(36.7)^2 \\ =148.8\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/ouvhwruac3m2m9j7clzcngtde0y3avvnpx.png)
The final energy of the ball is fully kinetic energy. Let the final impact speed of the ball is
![v_f](https://img.qammunity.org/2023/formulas/mathematics/college/q6uymqe8ea2jlq44lyx7yqnoj8vbfvmbim.png)
We can write, using the energy conservation principle that
![\begin{gathered} (PE)_i+(KE)_i=(1)/(2)mv_f^2 \\ 86.2+148.8=(1)/(2)*0.221* v_f^2 \\ v_f^2=2*(86.2+148.8)/(0.221) \\ v_f=46.1\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/q0lg02hdlouylxu7jjn5m998yddy1j0885.png)
Hence, the final impact speed of the ball is 46.1 m/s.