155k views
0 votes
Find the radius of a circle using the Pythagorean theorem, given that the center is at (11, -3) and the point (3, 12) lies on the circle.

User JustLearn
by
7.5k points

1 Answer

3 votes

Center: (11, -3)

Point: (3,12)

Radius?

The Pythagorean theorem using the circle is:


\begin{gathered} (x\text{ -a\rparen}^2\text{ + \lparen y -b\rparen }^2=\text{ r}^2 \\ Center\text{ \lparen a, b\rparen = \lparen11. -3\rparen} \\ Point\text{ \lparen x, y\rparen= \lparen3, 12\rparen} \\ \\ (3\text{ - 11\rparen}^2\text{ + \lparen12 - \lparen-3\rparen\rparen}^2=\text{ r}^2 \\ (\text{ -8\rparen}^2\text{ + \lparen12 + 3\rparen}^2=\text{ r}^2 \\ 64\text{ + \lparen15\rparen}^2=\text{ r}^2 \\ 64\text{ + 225= r}^2 \\ 289=\text{ r}^2 \\ \sqrt{289=\text{ r}} \\ 17=\text{ r} \end{gathered}

The radius of the circle is 17.

Find the radius of a circle using the Pythagorean theorem, given that the center is-example-1
User Jelgab
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories