177k views
3 votes
How many real number solutions are there to the equation 0 = 4x² + 3x + 2 ?

1 Answer

3 votes

Using the quadratic formula, let's determine the solution of the following equation:


\text{ 4x}^2\text{ + 3x + 2 = 0}

We get,

a = 4, b = 3 and c = 2


\text{ x = }\frac{\text{ -b }\pm\text{ }\sqrt{\text{b}^2\text{ - 4ac}}}{\text{2a}}
\text{ x = }\frac{-(3)\text{ }\pm\text{ }\sqrt{(3)^2\text{ - 4\lparen4\rparen\lparen2\rparen}}}{2(4)}\text{ = }\frac{-3\text{ }\pm\text{ }\sqrt{9\text{ - 32}}}{8}
\text{ x = }\frac{-3\text{ }\pm\text{ }√(-23)}{8}
\text{ x}_1=\text{ }\frac{-3\text{ + }√(-23)}{8}\text{ = }\frac{-3\text{ + i}√(23)}{8}\text{ \lparen imaginary\rparen}
\text{ x}_2\text{ = }\frac{-3\text{ - }√(-23)}{8}\text{ = }\frac{-3\text{ - i}√(23)}{8}\text{ \lparen imaginary\rparen}

Therefore, the equation has 2 imaginary roots and no real number solutions.

The answer is 0.

User Jobi Mg
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories