We want to find the value that makes
![P(X\ge x)=0.2](https://img.qammunity.org/2023/formulas/mathematics/college/es5vn2q792c25sa3mdd5a7uirgxrxil2vz.png)
To find it we must look at the standard normal table, using the complementary cumulative table we find that
![P(Z\ge z)=0.20045\Leftrightarrow z=0.84](https://img.qammunity.org/2023/formulas/mathematics/college/wgw4tg8d9jn05rqnlmpghqp8mqw0117pks.png)
Then, using the z-score we can find the minimum score needed, remember that
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/h06hsre30elxbqnbdkqzw5pbp57988qa0r.png)
Where
σ = standard deviation
μ = mean
And in our example, x = minimum score needed, therefore
![\begin{gathered} 0.84=(x-480)/(105) \\ \\ x=0.84\cdot105+480 \\ \\ x=568.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9j9b6nmbkyv4sa684jzyy5clhtcxe3puz3.png)
Rounding to the nearest integer the minimum score needed is 568, if you get 568 you are at the top 20.1%.