We have to identify the slope and y-intercept of each line.
To do that we want to have the following form of the line: y = mx + b, where m is the slope and b is the y-intercept.
a) In the case of the line -x + 3 = y, we can rewrite it as:
![\begin{gathered} -x+3=y \\ y=-x+3 \\ y=(-1)\cdot x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xqnfaejvnjfcyuu5aryojk2bjauh2wvnim.png)
We have made explicit the slope, so we can identify the slope as -1 and the y-intercept as 3.
b) For the line x - 3 = y we can do the same:
![\begin{gathered} x-3=y \\ y=x-3 \\ \Rightarrow Slope:1 \\ \Rightarrow Y-intercept:-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d7a6w1ncxi6a44109r4t67ouf19kp3rmu6.png)
c) For the line y = 3x - 1 we will have:
![\begin{gathered} y=3x-1 \\ \Rightarrow Slope:3 \\ \Rightarrow Y-intercept=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jve0cnrfa0ku34qq4v3uxs2zy0i08wopsx.png)
d) For the line y = 1 - 3x we will have:
![\begin{gathered} y=1-3x \\ y=-3x+1 \\ \Rightarrow Slope:-3 \\ \Rightarrow Y-intercept:1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oj3scj90gq4l3ur7vzfbui79l31ixi7aor.png)
We can then relate the columns as: