208k views
5 votes
#3 Choose the rule that represents a series of transformations

#3 Choose the rule that represents a series of transformations-example-1

1 Answer

4 votes

Step 1, write the coordinates of the vertices of the triangle GDI


\begin{gathered} G\Rightarrow(2,-4) \\ D\Rightarrow(4,-1) \\ I\Rightarrow(5,-5) \end{gathered}

Step 2: Write the coordinates of the vertices of the image G'D'I'


\begin{gathered} G^(\prime)\Rightarrow(-5,6) \\ D^(\prime)\Rightarrow(-3,3) \\ I^(\prime)\Rightarrow(-2,7) \end{gathered}

Step 3: Observe the difference in the x-coordinates to obtain the first rule of the transformation


\begin{gathered} G^(\prime)-G\Rightarrow(-5-2)\Rightarrow-7 \\ D^(\prime)-D\Rightarrow(-3-4)\Rightarrow-7 \\ I^(\prime)-I\Rightarrow(-2-5)\Rightarrow-7 \\ \text{Thus,} \\ \text{The first order is } \\ (x-7,y) \end{gathered}

Step 4: Reflect the resulting image over the x-axis


\begin{gathered} (-5,-4)\Rightarrow(-5,4) \\ (-3,-1)\Rightarrow(-3,1) \\ (-2,-5)\Rightarrow(-2,5) \\ \text{The rule becomes } \\ (x-7,-y) \end{gathered}

Step 5: Translate the resulting image vertically upward by 2 units


\begin{gathered} (-5,4+2)\Rightarrow(-5,6) \\ (-3,1+2)\Rightarrow(-3,3) \\ (-2,5+2)\Rightarrow(-2,7) \\ \text{The rule after this sequence is} \\ (x-7,-y+2) \end{gathered}

Hence, the rule that represents a series of transformations is given below


(x,y)\Rightarrow(x-7,-y+2)

User Gaurang Dave
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories