Given:
The air pressure at sea level is
![P_1=1.01*10^5\text{ Pa}](https://img.qammunity.org/2023/formulas/physics/college/t8ginu56lpbqsxxfyiqgurb9rc4bv0c9i5.png)
The temperature at sea level is
![\begin{gathered} T_1=17+273 \\ =290\text{ K} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wvzofnxshe6q7blsev0iskmebfza34kwht.png)
The air pressure at the final height is
![P_2=0.85P_1](https://img.qammunity.org/2023/formulas/physics/college/wuug4hunl94g23mewjjdawf026xwtu4t3e.png)
The final temperature is
![\begin{gathered} T_2=6+273 \\ =279\text{ K} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/p2ustl6chqvf961yo82cndfo0b9d30v4im.png)
The radius of the bubble at the final height is
![\begin{gathered} r_2=10\text{ cm} \\ =0.10\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/kbss39s7u5i0lrjdqwytsy3aow3ihmt360.png)
To find:
The initial radius of the bubble
Step-by-step explanation:
We know, for an ideal gas
![(PV)/(T)=constant](https://img.qammunity.org/2023/formulas/physics/college/s0e9pzv2jk31sxij6f9jbcvgm4fr8gy38a.png)
We can write,
![\begin{gathered} (P_1V_1)/(T_1)=(P_2V_2)/(T_2) \\ (P_1*(4)/(3)\pi r_1^3)/(T_1)=(0.85P_1(4)/(3)\pi(r_2)^3)/(T_2) \\ r_1^3=(0.85*(r_2)^3* T_1)/(T_2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/cv3wpezy5l7g2rgbb1fhgbzlgt4oruanmp.png)
Substituting the values we get,
![\begin{gathered} r_1^3=(0.85*0.10^3*290)/(279) \\ r_1=\text{ 0.096 m} \\ r_1=9.6\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4a2rmjyq9gv98q6o7jpi9xzxz65rdsyg95.png)
Hence, the radius at sea level was 9.6 cm.