The functions are
![f(x)=x^2-6x-15](https://img.qammunity.org/2023/formulas/mathematics/college/u96rnakhvjsxw9c7qe0ollph5pmy3b6wyc.png)
![g(x)=-3x-1](https://img.qammunity.org/2023/formulas/mathematics/college/jpf7j6xcopyp7p0bucipg3e8v25n54uapl.png)
You have to calculate (f o g)(x), this means that you have to replace g(x) inside f(x) → f(g(x))
So for f(x) x will be g(x) as:
![\begin{gathered} f(g(x))=(g(x))^2-6(g(x))-15 \\ f(g(x))=(-3x-1)^2-6(-3x-1)-15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jw3r5n8dzsl6hoq6o0iu80wwsthkcy8g9m.png)
I'll separate the composition in parts and solve them separatelly, once all terms are solved I'll add them together again:
So first solve the square of the binomial:
![\begin{gathered} (-3x-1)^2 \\ (-3x-1)(-3x-1) \\ (-3x)(-3x)+(-3x)(-1)+(-1)(-3x)+(-1)(-1) \\ 9x^2+3x+3x+1 \\ 9x^2+6x+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/384n1rj7iyvhc6uyk7m2u0xrkzy1ty02kr.png)
Next solve the second term, by applying the distributive property of multiplication:
![\begin{gathered} -6(-3x-1) \\ (-6)(-3x)+(-6)(-1) \\ 18x+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sycx9n8imj95b27ty1jycm4v3xggwe98gg.png)
Now put both solutions toghether with the last term of the equation and order the like terms together:
![\begin{gathered} f(g(x))=(-3x-1)^2-6(-3x-1)-15 \\ f(g(x))=(9x^2+6x+1)+(18x+6)-15 \\ f(g(x))=9x^2+6x+18x-15+6+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/15n3e4nk6kubu1tze5xi0uq462ylrrjdlq.png)
And finally simplify the expression by solving the operations between the like terms:
![\begin{gathered} f(g(x))=9x^2+(6x+18x)+(-15+6+1) \\ f(g(x))=9x^2+21x-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dd6zp2yns7wh25i2inidtm4iq2p4q99h4l.png)