197k views
1 vote
Let point C be on circle A. If Angle BAC is 2 radians and segment BC is 6cm, what is the length of the radius?

1 Answer

4 votes

\begin{gathered} \text{Angle BAC=}\theta\text{=2radians} \\ BC=6\operatorname{cm} \\ r=\text{?} \\ BC=r\theta \\ r=(BC)/(\theta) \\ r=(6cm)/(2) \\ r=3\operatorname{cm} \\ \text{The value of the radius is 3cm} \\ 3. \\ \text{The measure of the angle could be -140\degree} \\ \\ 7. \\ x=12\sin (60) \\ x=6√(3) \\ y=12\cos (60) \\ y=6 \\ \text{The value of x is }6\sqrt[]{3}\text{ and y is 6} \\ \\ 8.\text{ } \\ x=10 \\ x=\sqrt{(5)^2^{}+(5\sqrt[]{3})^2} \\ x=\sqrt[]{25+(25\cdot3)} \\ x=\sqrt[]{25+75} \\ x=√(100) \\ x=10,\text{ hence } \\ \text{The value of a is 5 and b is 5}\sqrt[]{3} \end{gathered}

Let point C be on circle A. If Angle BAC is 2 radians and segment BC is 6cm, what-example-1
Let point C be on circle A. If Angle BAC is 2 radians and segment BC is 6cm, what-example-2
User AtzeAckermann
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories