197k views
1 vote
Let point C be on circle A. If Angle BAC is 2 radians and segment BC is 6cm, what is the length of the radius?

1 Answer

4 votes

\begin{gathered} \text{Angle BAC=}\theta\text{=2radians} \\ BC=6\operatorname{cm} \\ r=\text{?} \\ BC=r\theta \\ r=(BC)/(\theta) \\ r=(6cm)/(2) \\ r=3\operatorname{cm} \\ \text{The value of the radius is 3cm} \\ 3. \\ \text{The measure of the angle could be -140\degree} \\ \\ 7. \\ x=12\sin (60) \\ x=6โˆš(3) \\ y=12\cos (60) \\ y=6 \\ \text{The value of x is }6\sqrt[]{3}\text{ and y is 6} \\ \\ 8.\text{ } \\ x=10 \\ x=\sqrt{(5)^2^{}+(5\sqrt[]{3})^2} \\ x=\sqrt[]{25+(25\cdot3)} \\ x=\sqrt[]{25+75} \\ x=โˆš(100) \\ x=10,\text{ hence } \\ \text{The value of a is 5 and b is 5}\sqrt[]{3} \end{gathered}

Let point C be on circle A. If Angle BAC is 2 radians and segment BC is 6cm, what-example-1
Let point C be on circle A. If Angle BAC is 2 radians and segment BC is 6cm, what-example-2
User AtzeAckermann
by
3.2k points