221k views
1 vote
Consider the following functions.f(x) = x^2 + 2x, g(x) = 3x^2 - 1

Consider the following functions.f(x) = x^2 + 2x, g(x) = 3x^2 - 1-example-1

1 Answer

5 votes

\begin{gathered} a)(f+g)(x)=4x^2+2x-1 \\ \text{Domain:(-}\infty,\infty) \\ c)(f-g)(x)=-2x^2+2x+1 \\ \text{Domain:(-}\infty,\infty) \\ e)(fg)(x)=3x^4+6x^3-x^2-2x \\ \text{ Domain}(-\infty,\infty) \\ g)((f)/(g))(x)=((x^2+2x))/((3x^2-1)) \\ \text{Domain:}(-\infty,\frac{1}{\sqrt[]{3}})\cup(\frac{1}{\sqrt[]{3}},\infty) \end{gathered}

Step-by-step explanation

The domain of a function is the set of all possible inputs for the function.

so

Let


\begin{gathered} f(x)=x^2+2x \\ g(x)=3x^2-1 \end{gathered}

Step 1

a) (f+g)(x)

to add the function , add like terms


\begin{gathered} f(x)+g(x)=(f+g)(x)=x^2+2x+3x^2-1 \\ (f+g)(x)=x^2+2x+3x^2-1 \\ (f+g)(x)=4x^2+2x-1 \end{gathered}

so


a)(f+g)(x)=4x^2+2x-1

(b) domain of the function:

the domain of a quadratic function f(x) is the set of x -values for which the function is defined,so


\text{Domain:(-}\infty,\infty)

Step 2

c) (f-g)(x)

subtract the functions


\begin{gathered} f(x)-g(x)=(f-g)(x)=x^2+2x-(+3x^2-1) \\ (f-g)(x)=x^2+2x-3x^2+1 \\ (f-g)(x)=-2x^2+2x+1 \end{gathered}

d)Domain:For any linear function the domain and range are always all real numbers


\mleft(-\infty,\infty\mright)

Step 3

e) (fg)(x)


\begin{gathered} f(x)=x^2+2x \\ g(x)=3x^2-1 \\ \text{then} \\ (fg)(x)=(x^2+2x)(3x^2-1) \\ \text{apply distributive property} \\ (fg)(x)=(x^2\cdot3x^2)-(1\cdot x^2)+(2x\cdot3x^2)-(2x\cdot1) \\ (fg)(x)=3x^4-x^2+6x^3-2x \\ \text{reorder} \\ (fg)(x)=3x^4+6x^3-x^2-2x \end{gathered}

f) again we have a polynomial so, The domain of all polynomial functions is all real numbers:


\text{ Domain}\mleft(-\infty,\infty\mright)

Step 4

g) (f/g)(x)


\begin{gathered} f(x)=x^2+2x \\ g(x)=3x^2-1 \\ \text{then} \\ ((f)/(g))(x)=((x^2+2x))/(\mleft(3x^2-1\mright)) \\ \end{gathered}

h) domain, we see this function is not definded when the denominator equals zero, we need to find that number


\begin{gathered} 3x^2-1=0 \\ \text{add 1 in both sides} \\ 3x^2-1+1=0+1 \\ 3x^2=1 \\ \text{divide both sides by 3} \\ (3x^2)/(3)=(1)/(3) \\ x^2=(1)/(3) \\ √(x^2)=\sqrt{(1)/(3)} \\ x=\frac{1}{\sqrt[]{3}} \\ so,\text{ the domain is} \\ (-\infty,\frac{1}{\sqrt[]{3}})\cup(\frac{1}{\sqrt[]{3}},\infty) \end{gathered}

I hope this helps you

User Saleh
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories