![\begin{gathered} a)(f+g)(x)=4x^2+2x-1 \\ \text{Domain:(-}\infty,\infty) \\ c)(f-g)(x)=-2x^2+2x+1 \\ \text{Domain:(-}\infty,\infty) \\ e)(fg)(x)=3x^4+6x^3-x^2-2x \\ \text{ Domain}(-\infty,\infty) \\ g)((f)/(g))(x)=((x^2+2x))/((3x^2-1)) \\ \text{Domain:}(-\infty,\frac{1}{\sqrt[]{3}})\cup(\frac{1}{\sqrt[]{3}},\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3xc9q045ezusqaygva8bw1u3jp5d3tn9m6.png)
Step-by-step explanation
The domain of a function is the set of all possible inputs for the function.
so
Let

Step 1
a) (f+g)(x)
to add the function , add like terms

so

(b) domain of the function:
the domain of a quadratic function f(x) is the set of x -values for which the function is defined,so

Step 2
c) (f-g)(x)
subtract the functions

d)Domain:For any linear function the domain and range are always all real numbers

Step 3
e) (fg)(x)

f) again we have a polynomial so, The domain of all polynomial functions is all real numbers:

Step 4
g) (f/g)(x)

h) domain, we see this function is not definded when the denominator equals zero, we need to find that number
![\begin{gathered} 3x^2-1=0 \\ \text{add 1 in both sides} \\ 3x^2-1+1=0+1 \\ 3x^2=1 \\ \text{divide both sides by 3} \\ (3x^2)/(3)=(1)/(3) \\ x^2=(1)/(3) \\ √(x^2)=\sqrt{(1)/(3)} \\ x=\frac{1}{\sqrt[]{3}} \\ so,\text{ the domain is} \\ (-\infty,\frac{1}{\sqrt[]{3}})\cup(\frac{1}{\sqrt[]{3}},\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cqkjkcc3gr76jdarlq29y2b64cimc554ig.png)
I hope this helps you