To determine the probability using a normal approximation we need to determine the z-score of the sample. To do that we use the following formula:
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/h06hsre30elxbqnbdkqzw5pbp57988qa0r.png)
Where:
![\begin{gathered} z=\text{ z-score} \\ \mu=\text{ mean} \\ \sigma=\text{ standard deviation} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wd61d3m45ipdgagxnebmyamynzdwez9hj6.png)
First, we need to calculate the mean. To do that we use the following formula:
![\mu=n\pi](https://img.qammunity.org/2023/formulas/mathematics/college/reui23bbf0zk6ffhv7u673xvak9bnew0u3.png)
Where
![\begin{gathered} n=\text{ sample size} \\ \pi=\text{ failure rate in decimal form} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4pqh7ifyumc9k9hu4ofbwdc1mvrf6zrewj.png)
To determine the decimal form of the failure rate we divide the percentage by 100, like this:
![\pi=(7.4)/(100)=0.074](https://img.qammunity.org/2023/formulas/mathematics/college/te4zy3id6jtxm8dmwu93jrt9wm87inc4sj.png)
The sample size, in this case, is 295. Substituting we get:
![\begin{gathered} \mu=(295)(0.074) \\ \mu=21.83 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hmageeknpg0nsyhhsn2nyl93m6my3sfb5b.png)
Now, we need to calculate the standard deviation. We do this using the following formula:
![\sigma=√(n\pi(1-\pi))](https://img.qammunity.org/2023/formulas/mathematics/college/ufz5f3e52lyydnmqxx71p4pr9d40vouz4p.png)
Substituting the values we get:
![\sigma=\sqrt[]{(295)(0.074)(1-0.074)}](https://img.qammunity.org/2023/formulas/mathematics/college/jpdcst49w65fy1j9l964hd3sxfkaukjcg1.png)
Solving the operations:
![\sigma=4.49](https://img.qammunity.org/2023/formulas/mathematics/college/v0iv7p3cmib76m8u8nmvf3lgbhd1uuxs0o.png)
Since we are approximating to binomial we need to use a continuity correction factor of 0.5 to the number of chips we are considering. Let "x" be the number of chips, we have that:
![x=22-0.5=21.5](https://img.qammunity.org/2023/formulas/mathematics/college/t8nzfl1abx8h16chjo5vfs75zao38gmns8.png)
Now we substitute in the formula for the z-score:
![z=(21.5-21.83)/(4.49)](https://img.qammunity.org/2023/formulas/mathematics/college/d1d9wquz6oy0tfdonuc7ntddtag8xb3tuk.png)
Now, we solve the operations:
![z=-0.073](https://img.qammunity.org/2023/formulas/mathematics/college/qv2hz4lcyztgva1gnkgrh955s4z14h6cud.png)
Therefore, in the binomial distribution, we need to determine the area for z = -0.073. Therefore, the probability is:
![P(x<22)=0.472](https://img.qammunity.org/2023/formulas/mathematics/college/ov1276ty9plht359qtfxjnasd6z5xweucq.png)
Therefore, the probability is 0.472