175k views
0 votes
What is a ? Do not include units (degrees) in your answer.

What is a ? Do not include units (degrees) in your answer.-example-1
User Masterial
by
4.0k points

1 Answer

5 votes

Step-by-step explanation

Step 1

we have a right triangle,find the hypotenuse

use Pythagoras Teorem to find the hypotenuse ( green line)


\begin{gathered} T\mathrm{}P\text{. } \\ \text{adjacent side}^2+oppositeside^2=hypotenuse^2 \end{gathered}

replacing


\begin{gathered} \text{red line}^2+blueline^2=greenline^2 \\ 3^2+12^2=hypotenuse^2 \\ 9+144=hypotenuse^2 \\ hypotenuse^2=153 \\ hypotenuse=\sqrt[]{153} \\ \\ \end{gathered}

Step

use cosine function to find the angles

a)


\cos \beta=\frac{adjacent\text{ side}}{\text{hypotenuse}}

replace,


\begin{gathered} \text{angle}=\alpha \\ \text{adjacen side =3} \\ \text{hypotenuse = }\sqrt[]{153} \\ \cos \alpha=\frac{3}{\sqrt[]{153}} \\ \text{then} \\ \alpha=\cos ^(-1)(\frac{3}{\sqrt[]{153}}) \end{gathered}

b)


\begin{gathered} \text{angle}=\emptyset \\ \text{adjacent side = 12} \\ \text{hypotenuse}=\sqrt[]{153} \\ \text{then} \\ \cos \emptyset=\frac{12}{\sqrt[]{153}} \\ \emptyset=\cos ^(-1)(\frac{12}{\sqrt[]{153}}) \end{gathered}

What is a ? Do not include units (degrees) in your answer.-example-1
User Zin
by
4.1k points