The general standard equation for a circle with radius r centered at (h, k) is:
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/5s77z5lwu6jnvb5vkwanu2jvhq5sh1qkc3.png)
In this problem, since the circle is centered at the origin, the point (h, k) is (0, 0). So, substituting it:
![\begin{gathered} (x-0)^2+(y-0)^2=r^2 \\ or \\ x^2+y^2=r^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ybigrdz1gsfci2c1xen2dc9ceppyxbsh75.png)
Now, it is only necessary to find the radius. It is given in the picture (x-axis) and it has a value of 8.
So, the equation is:
![\begin{gathered} (x-0)^2+(y-0)^2=8^2 \\ or\text{ } \\ (x)^2+(y)^2=8^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cdsxaot0lol3kfukhbkporjrqzas3m6o9w.png)