101k views
0 votes
Use the distance formula to calculate the length of side CD and DA

Use the distance formula to calculate the length of side CD and DA-example-1

1 Answer

3 votes

Given the line segment with endpoints DC

Step 1: Write the coordinates of the points and define the (x,y) values


\begin{gathered} D(1,-2),x_1=1,y_1=-2 \\ C(4,-1),x_2=4,y_2=-1 \\ \end{gathered}

Step 2: Write the formula for the distance between two points


\begin{gathered} |DC|=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \end{gathered}

Step 3: Substitute the x and y values


\begin{gathered} |DC|=\sqrt[]{(4-1)^2+(-1-(-2)_{})^2} \\ =\sqrt[]{(3^2)+(1)^2} \\ =\sqrt[]{9+1} \\ =\sqrt[]{10}\text{ units =3.16units} \end{gathered}

Hence, the length of the DC is 3.16 units

Or


\sqrt[]{10}\text{ units}

Step 4: Use similar procedure for side CD above to obtain side DA


\begin{gathered} A(-2,2),x_1=-2,y_1=2 \\ D(1,-2),x_2=1,y_2=-2 \end{gathered}
\begin{gathered} |AD|=\sqrt[]{(1-(-2_{}_{}))^2+(-2-2)^2} \\ =\sqrt[]{(1+2)^2+(-4)^2} \\ =\sqrt[]{3^2+16} \\ =\sqrt[]{9+16^{}} \\ =\sqrt[]{25\text{ }}\text{ =5 units} \end{gathered}


\begin{gathered} |AD|=\sqrt[]{(1-(-2))^2+(-2-2)^2_{}} \\ =\sqrt[]{(1+2)^2+(-4^2)} \\ =\sqrt[]{9+16} \\ =\sqrt[]{25} \\ =5\text{units} \end{gathered}

Hence the length of side DA is 5 units

Summary

CD =3.16 units or root 10

DA= 5 units

User Kana Natsuno
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories