Solution
A zombie infection in Tonky public schools grows by 15% per hour.
The formula for exponential growth is
![y=a(1+r)^t_{}](https://img.qammunity.org/2023/formulas/mathematics/college/iic60qe42iy01lhe3tzy73fkatwawryfid.png)
Where
![\begin{gathered} a\text{ is the }initial\text{ amount} \\ r\text{ is the }growth\text{ rate} \\ t=time\text{ intervals} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4r6lnhw1gg9vfc593mx1gyzitwhq9datl3.png)
The initial group of zombies was 4 freshman, i.e
![a=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/qfu4ujfyjy4aurtg1krr0cujqj0neldnhg.png)
The growth rate, r is
![\begin{gathered} r=(15)/(100)=0.15 \\ r=0.15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s3i6pqull3q056rbfsy36f5teonmiixrd8.png)
The exponential growth equation is
![\begin{gathered} y=a(1+r)^t \\ y=4(1+0.15)^t \\ y=4(1.15)^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qy4qfs56f3q52a4kow3d3579qfxddgzobt.png)
After 14 hours, i.e t = 14 hours, the number of zombies there is
![\begin{gathered} y=4(1.15)^t \\ \text{Where t}=14hours \\ y=4(1.15)^(14) \\ y=28.30282 \\ y=28\text{ (nearest whole number)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yapoavnhj6uezb0hy7og5sqr2c21do6gyx.png)
Hence, the number of zombies after 14 hours is 28 (nearest whole number)