358,943 views
40 votes
40 votes
For a particular reaction at 135.4 °C, Δ=−775.41 kJ/mol, and Δ=817.91 J/(mol⋅K).

Calculate ΔG for this reaction at 12.7 °C.

Δ=

User Andrew Brown
by
2.7k points

1 Answer

23 votes
23 votes

Answer:


-675.053\ \text{kJ/mol}

Step-by-step explanation:


\Delta G = Gibbs free energy =
-775.41\ \text{kJ/mol}


\Delta S = Change in entropy =
817.91\ \text{J/mol K}=0.81791\ \text{kJ/mol K}


T = Temperature =
135.4^(\circ)\text{C}=408.55\ \text{K}


\Delta H = Change in enthalpy

Gibbs free energy is given by


\Delta G=\Delta H-T\Delta S\\\Rightarrow \Delta H=\Delta G+T\Delta S\\\Rightarrow \Delta H=-775.41+408.55* 0.81791\\\Rightarrow \Delta H=-441.253\ \text{kJ/mol}


T=12.7^(\circ)\text{C}=285.85\ \text{K}


\Delta G=\Delta H-T\Delta S\\\Rightarrow \Delta G=-441.253-285.85* 0.81791\\\Rightarrow \Delta G=-675.053\ \text{kJ/mol}

The required Gibbs free energy is
-675.053\ \text{kJ/mol}.

User Nondv
by
2.5k points