197k views
0 votes
Find f^{-1}(x) for the function below. Do not put spaces between your characters. If no inverse exists then type "none".f(x)=x-13f^{-1}(x)=Answer

Find f^{-1}(x) for the function below. Do not put spaces between your characters. If-example-1

1 Answer

1 vote

Remember the definition of the inverse function


\begin{gathered} f^(-1)(f(x))=x \\ f^{}(f^(-1)(y))=y \end{gathered}

Then, in our problem, we need to find f^-1 such that


\begin{gathered} f^(-1)(f(x))=x \\ \Rightarrow f^(-1)(x-13)=x \\ \end{gathered}

Then, a clear possibility is:


\begin{gathered} f^(-1)(y)=y+13 \\ \Rightarrow f^(-1)(x-13)=x-13+13=x \\ \Rightarrow f^(-1)(y)=y+13 \end{gathered}

Now, the second condition


\begin{gathered} f^{}(f^(-1)(y))=f(y+13)=(y+13)-13=y \\ \Rightarrow f^{}(f^(-1)(y))=y \end{gathered}

Thus, the inverse function is x+13


f^(-1)(x)=x+13

User Rob Horton
by
3.8k points