232k views
5 votes
Determine which set of vectors has an angle of 90° between them.

Determine which set of vectors has an angle of 90° between them.-example-1

1 Answer

2 votes

Answer:

Explanation:

The angle between two vectors is represented by the following equation:


\cos \theta=\frac{\vec{u}\cdot\vec{v}}{\lvert\vec{u}\rvert\lvert\vec{v}\rvert}

Notice that this equation involves a trigonometric function, the dot product of two vectors, and the magnitude of two vectors.

For v=<10,2>, w=<-5,-1>:

As a first step let's determine the dot product of the two vectors:


\begin{gathered} \vec{v}\cdot\vec{w}=10\cdot-5+2\cdot-1 \\ \vec{v}\cdot\vec{w}=-52 \end{gathered}

Then, calculate the magnitudes of the vectors:


\begin{gathered} \lvert\vec{v}\rvert=\sqrt[]{(10)^2+(2)^2}=2\sqrt[]{26} \\ \lvert\vec{w}\rvert=\sqrt[]{(-5)^2+(-1)^2}=\sqrt[]{26} \end{gathered}

Now, substitute the values into the equation:


\begin{gathered} \cos \theta=\frac{-52}{2\sqrt[]{26}\cdot\sqrt[]{26}} \\ \cos \theta=-1 \\ \theta=\cos ^(-1)(-1)=\text{ 180\degree} \end{gathered}

For v=<3,1>, w=<2,-6>:


\begin{gathered} \vec{v}\cdot\vec{w}=3\cdot2+1\cdot-6 \\ \vec{v}\cdot\vec{w}=0 \\ \lvert\vec{v}\rvert=\sqrt[]{(3)^2+(1)^2}=\sqrt[]{10} \\ \lvert\vec{w}\rvert=\sqrt[]{(2)^2+(-6)^2}=2\sqrt[]{10} \\ \cos \theta=\frac{0}{2\sqrt[]{10}\cdot\sqrt[]{10}} \\ \theta=\cos ^(-1)(0)=\text{ 90\degree} \end{gathered}

For v=<-10,5>, w=<1,-2>:


undefined

User OHY
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories