ANSWER:
a) 8.68 m/s^2
b) 71.74 rad/s^2
c) 9.765 m
Explanation:
Given:
m1 = 2.85 kg
m2 = 0.742 kg
r = 0.121 m
a)
From the Newton's second law of motion, the downward force acting on the bucket is:
![\begin{gathered} \sum ^{}_{}F=m_1\cdot g-T=m_1\cdot a \\ T=m_1\cdot g-m_1\cdot a\text{ (1)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/znrw9ulvey5l15t2b1k671nf6347fsp2u3.png)
Torque acting on the pulley is:
![\begin{gathered} \sum ^{}_{}\tau=I\alpha=rT \\ I\alpha=rT \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jujf84jwgnu33s6lxw8gguck0owkkfy1if.png)
Hence, the angular acceleration is:
![\begin{gathered} \alpha=(a)/(r),\text{ and inertia is, I }=(1)/(2)m_2\cdot r^2 \\ \text{ therefore:} \\ (1)/(2)m_2\cdot r^2\cdot(a)/(r)=rT \\ T=(1)/(2)m_2\cdot a\text{ (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/i7qrj9l1aix9a6idm6c0gw7t3nman07rii.png)
We equate equations (1) and (2), and solve for the acceleration like this:
![\begin{gathered} m_1\cdot g-m_1\cdot a=(1)/(2)m_2\cdot a \\ (1)/(2)m_2\cdot a+m_1\cdot a=m_1\cdot g \\ a\cdot((1)/(2)m_2+m_1)=m_1\cdot g \\ a=(m_1\cdot g)/((1)/(2)m_2+m_1) \\ \text{ replacing:} \\ a=(2.85\cdot9.81)/((1)/(2)\cdot0.742+2.85) \\ a=8.68m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3t1i67s6jo7xfcbu56xsqjmrp8v2nvf5iu.png)
b)
The angular acceleration of the pulley is:
![\begin{gathered} \alpha=(a)/(r) \\ \text{ replacing} \\ \alpha=(8.68)/(0.121) \\ \alpha=71.74rad/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/sav3pfxkupbjnmyog5z78hjzb6nljxj4y6.png)
c)
We use the following equation to be able to calculate the distance:
![\begin{gathered} x=(1)/(2)a\cdot t^2 \\ \text{ replacing} \\ x=(1)/(2)\cdot8.68\cdot(1.5)^2 \\ x=9.765\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jyhhyh3qejfscoxqxjd6lhdtgqn65gpq1k.png)