232k views
0 votes
154) Find all possible values of x^3 + 1/x^3 given that x^2+ 1/X^2 = 7.

154) Find all possible values of x^3 + 1/x^3 given that x^2+ 1/X^2 = 7.-example-1

1 Answer

5 votes

Solving for x in the equation, we have:


\begin{gathered} x^2+(1)/(x^2)=7 \\ x^4+1=7^{}x^2(^{}\text{ Multiplying by x}^2\text{ on both sides of the equation and distributing)} \\ x^4-7^{}x^2+1=0(\text{ Subtracting 7x}^2\text{ from both sides of the equation)} \end{gathered}


\begin{gathered} y^2-7^{}y+1=0\text{ (Replacing y=x}^2\text{ in the equation)} \\ \text{ Using the quadratic equation with a=1, b=-7 and c=1, we have:} \\ \frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \frac{-(-7)\pm\sqrt[]{(-7)^2-4(1)(1)}}{2(1)}\text{ (Replacing the values)} \end{gathered}


\begin{gathered} \frac{7\pm\sqrt[]{49-4}}{2}\text{ (Using the sign rules, raising -7 to the power of 2 and multiplying)} \\ y1=\frac{7+\sqrt[]{45}}{2}=6.85\text{ (Simplifying to find the first solution)} \\ y2=\frac{7-\sqrt[]{45}}{2}=0.146\text{ (Simplifying to find the second solution)} \end{gathered}


\begin{gathered} \text{ Given that y=x}^2,\text{ we have to find the values of x. Doing so, we have:} \\ x1=\sqrt[]{6.85}=2.62 \\ x2=-\sqrt[]{6.85}=-2.62 \\ x3=\sqrt[]{0.146}=0.382 \\ x4=-\sqrt[]{0.146}\text{ =}-0.382 \end{gathered}

Replacing the previous values in the expression x^3 + 1/(x^3), we have:


\begin{gathered} \text{First value: (2.62)}^{}^3+(1)/((2.62)^3)=18.04 \\ \text{ Second value: (-2.62)}^3+(1)/((-2.62)^3)=-18.04 \\ \text{ Third value: (0.382)}^3+(1)/((0.382)^3)=17.995 \\ \text{ Fourth value: (-0.382)}^3+(1)/((-0.382)^3)=-17.995 \end{gathered}

User Sheki
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories