Let x represent the number of trees of corn muffins
Let y represent the number of trees of bran muffins
![\begin{gathered} 4x\text{ + 2y }\leq\text{ 16} \\ 3x\text{ + 3y }\leq15 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/orocefqzjcn4u0vtczyx941cmqscl44wp7.png)
Then reducing it to the simplest form
![\begin{gathered} 2x\text{ + y }\leq\text{ 8} \\ x\text{ + y }\leq5 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2utexy8l0xuii4m9gcvwhbhep69iy8h3sd.png)
Then the number of corn muffins with bran muffins to make a profit
![3x\text{ + 2y}](https://img.qammunity.org/2023/formulas/mathematics/college/5cied37w58stkmh0jh69pwyxmtnp1njyg5.png)
where
![x\text{ }\ge\text{ 0 , y}\ge\text{ 0 }](https://img.qammunity.org/2023/formulas/mathematics/college/m9do7gtg400t9hs1zligli390yykphauox.png)
The graph showing all points of x and y values to be tested to obtain the maximum profit is given below
![\begin{gathered} \text{GIven the following points} \\ (3,2),(0,5),(4,0)\text{ and (0,0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ph7f14lrf1mln2ch0bu8xslno14tovfp6i.png)
![\begin{gathered} \text{The Profit formula will be} \\ P=3x+2y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/43srcvly35kawmirxqi8dm8r9o2vzclq41.png)
![\begin{gathered} \text{Substitute the coordinates points to obtain the maximum profit} \\ \text{For (3,2)} \\ x=3.y=2 \\ P=3(3)+2(2)=9+4=\text{ \$13} \\ \text{For (0 , 5)} \\ x=0,y=5 \\ P=3(0)+2(5)=0+10=\text{ \$10} \\ For\text{ (4 , 0)} \\ x=4,y=0 \\ P=3(4)+2(0)=12+0=\text{ \$12} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4v89vukhjsoe3385125ud15obqpb7089zk.png)
From the above test, the points that yield the maximum profit is at ( 3, 2), therefore we can conclude that the baker would need 3 trays of corn muffins and 2 trays of bran muffins to maximize his profit
The answer is 3 trays of corn muffins and 2 trays of bran muffins