We are given the following expressions
![(14)/(3x^2-18x-48)\; and\; (-1)/(21x^2-84)](https://img.qammunity.org/2023/formulas/mathematics/college/81ybai480bvemfbp0i59ty8lqwnierdo96.png)
We are asked to find the least common denominator (LCD) for the above expressions.
First of all, we need to factor out both the denominators
![\begin{gathered} 3x^2-18x-48 \\ 3(x^2-6x-16) \\ 3(x^2-8x+2x-16) \\ 3((x^2-8x)+(2x-16)) \\ 3(x(x^{}-8)+2(x-8)) \\ 3(x^{}-8)(x+2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jqgakjo73g2eh96zx8819rvm3q2ssyl4mz.png)
Similarly, factor out the other denominator
![\begin{gathered} 21x^2-84 \\ 21(x^2-4) \\ 21((x)^2-(2)^2) \\ 21(x+2)(x-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dzvv0l9sb7a1zeknp0cq8afnafojlnshn5.png)
So, the expressions become
![\frac{14}{3(x^{}-8)(x+2)}\; and\; (-1)/(21(x+2)(x-2))](https://img.qammunity.org/2023/formulas/mathematics/college/gulsha57u5zd4ydzpx3tz2vmq8ysx650vb.png)
The least common denominator (LCD) is
![21(x-8)(x+2)(x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/8ss3rfwjvrt8cfo0qsvt8t0musaouwnmld.png)