Step-by-step explanation:
First, we need to know that by definition:
![i^2=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/yq84fwq8mf651ezifio1x1gelf6zyjx7yj.png)
Then, to multiply the complex numbers, we can apply the distributive property as:
![2i\cdot(3-2i)=2i\cdot3-2i\cdot2i](https://img.qammunity.org/2023/formulas/mathematics/college/so2paecr98xl9fq99dlu4fru2cgq6b3m7z.png)
Solving the multiplication and applying the definition, we get:
![\begin{gathered} 2i\cdot(3-2i)=6i-4i^2 \\ 2i\cdot(3-2i)=6i-4(-1) \\ 2i\cdot(3-2i)=6i+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/30dg66ntser4pwccmckd9x10ny5vzh8tu1.png)
So, the product of the complex numbers is 6i + 4
Answer: 6i + 4