Answer:
![N=(N_(\infty))/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/avfmqzx03s31ewcmocxw4zwtw0sezgdqy3.png)
Vertex: (150, 17.33)
Explanation:
The equation for the parabola is given as:
![\begin{aligned} & K=-(r)/(N_(\infty))N^2+rN\text{ where:} \\ & K=\text{ Daily New Cases, } \\ & N=\text{ Total Cumulative Cases (at a particular time }t\text{ ) } \\ & N_(\infty)=\text{ maximum possible total cases } \\ & r\text{ is the exponential growth rate of the pandemic if }N=N_0e^(rt)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/2n4sbb3uhjwwugpd382lmk50vg38n7wt6r.png)
Part 6
The x-coordinate of the vertex of the parabola is the equation of the axis of symmetry.
We can find the equation of the axis of symmetry using the formula:
![x=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/7gr846x3106wifbv8ib3mo7x3lghpti0f2.png)
From the equation for K:
![\begin{gathered} K=-(r)/(N_(\infty))N^2+rN\implies a=-(r)/(N_(\infty)),b=r \\ \implies x=-r/(-(2r)/(N_(\infty))) \\ =r*(N_(\infty))/(2r) \\ N=(N_(\infty))/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b2baiobu11r3hy5mi6nmg0av2hknhrh8p9.png)
The equation of the x-coordinate of the vertex of the daily vs total cases parabola is:
![N=(N_(\infty))/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/avfmqzx03s31ewcmocxw4zwtw0sezgdqy3.png)
Part 7
• From part (4), the growth rate, r= ln(2)/3.
,
• Given that N∞ = 300 million
The coordinates of the vertex will be:
![(N,K)=((N_(\infty))/(2),-(r)/(N_(\infty))N^2+rN)](https://img.qammunity.org/2023/formulas/mathematics/college/r6zhvzyecw3azf6o05wrfef7cyhjqu4tlb.png)
Replace N in the y-coordinate with the equation obtained from part(6).
![\begin{gathered} (N,K)=((N_(\infty))/(2),-(r)/(N_(\infty))*((N_(\infty))/(2))^2+(rN_(\infty))/(2)) \\ =((N_(\infty))/(2),-(rN_(\infty))/(4)+(rN_(\infty))/(2)) \\ =((N_(\infty))/(2),(2rN_(\infty)-rN_(\infty))/(4)) \\ =((N_(\infty))/(2),(rN_(\infty))/(4)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/slltx8rsyz6f29z7zq4pfthyx9y23dlf4t.png)
Substitute the given values:
![(N,K)=((300)/(2),((\ln(2))/(3)*300)/(4))=(150,25\ln (2))](https://img.qammunity.org/2023/formulas/mathematics/college/flm29v5oukis7086e4wdt3j9y6uvdjkfd5.png)
The coordinates of the vertex will be (150, 17.33).