116k views
3 votes
The equation of a parabola is y = x(squared)+ 2x + 8. Write the equation in vertex form

1 Answer

2 votes

y=(x+1)^2\text{ + 7}Step-by-step explanation:
\begin{gathered} \text{Given:} \\ y\text{ = }x^2\text{ + 2x + 8} \end{gathered}

The equation of parabola in vertex form:


y\text{ = a(x }-h)^2\text{ + k}

where (h, k) is the vertex


\begin{gathered} \text{h = }(-b)/(2a) \\ k\text{ = f(-b/2a)} \end{gathered}

From the equation given: a = 1, b = 2, c = 8


\begin{gathered} h\text{ = }(-2)/(2(1))\text{ = -2/2} \\ h\text{ = -1} \\ \\ \text{let f(x) = x}^2\text{ + 2x + 8} \\ k=f(-(b)/(2a))\text{ = f(-1)} \\ f(-1)=(-1)^2\text{ + 2(-1) + 8 = 1 - 2 + 8} \\ k\text{ = f(-1) = 7} \end{gathered}
\begin{gathered} \text{The equation substituting the vertex:} \\ y=a(x-(-1))^2\text{ + 7} \\ y=a(x+1)^2\text{ + 7} \end{gathered}

We need to find a. To get a, we will use the y-intercept.

The value of y when x = 0


\begin{gathered} y\text{ = (0)}^2\text{ + 2(0) + 8} \\ y\text{ = 8} \\ \text{The y intercept: }(0,\text{ 8)} \end{gathered}

Substitute for x and y in the vertex equation using the y-intercept:


\begin{gathered} y\text{ = a}(x+1)^2\text{ + 7} \\ x\text{ = 0, y = 8} \\ 8=a(0+1)^2\text{ + }7 \\ 8\text{ }=a(1)^2\text{ + 7} \\ 8\text{ = a + 7} \\ a\text{ = 8 - 7} \\ a\text{ = 1} \end{gathered}

The equation in vertex form:


\begin{gathered} y=1(x+1)^2\text{ + 7} \\ y=(x+1)^2\text{ + 7} \end{gathered}

User Stefan Wittwer
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories