We will have the following:
a)
![\begin{gathered} (0.02kg)(561m/s)=(1.23kg)v_f\Rightarrow v_f=(11.22kg\ast m/s)/(1.23kg) \\ \\ \Rightarrow v_f=(374)/(41)m/s\Rightarrow v_f\approx9.12m/s \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fjj4g4di1kogukbxkptcinclj3olwxyvxh.png)
So, the recoil is approximately -9.12 m/s.
b) Now, we determine the average force of the rifle:
First, we determine the time it took to have the final velocity the bullet:
![\begin{gathered} -0.222m=(1)/(2)(0m/s-9.12m/s)t\Rightarrow t=(4551)/(93500)s \\ \\ \Rightarrow t\approx0.049s \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dv12m5hqc6b6s0c57x4sgzys2ryeufgdco.png)
Now, we determine the average force:
![\begin{gathered} F=\frac{(1.23kg)(374/41\text{ }m/s-0m/s)}{(4551/93500s)}\Rightarrow F=230.5141727...N \\ \\ \Rightarrow F\approx230.51N \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/sfed2gnr1v973cxp4ht31q9kcnu57hje8g.png)
So, the average force was approximately 230.51 N.
c) If th bullet is accelerated to this velocity in 13.4 ms we will have that:
![F=((1.23kg)(374/41m/s-0m/s))/((0.0134s))\Rightarrow F\approx837.31N](https://img.qammunity.org/2023/formulas/physics/college/qvfgv8is38af1immj7f55m46c4h35di6ja.png)
So, the force would be much greater.