Lets draw a picture of the problem:
where the bearing angle is measured in a clockwise direction from the north line.
Then, we need to find the distance d_3 and the angle theta. The distances d_1 and d_2 were given as
![\begin{gathered} d_1=\text{speed x time=400mph}*2hours=800\text{ miles} \\ d_2=\text{speed x time=400mph}*3hours=1200\text{ miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dycif5g67a6fo11pw7vrf48y0o9fy01lho.png)
By applying the law of cosines, we have
![d^2_3=d^2_1+d^2_2-2\cdot d_1\cdot d_2\cdot\cos 80](https://img.qammunity.org/2023/formulas/mathematics/college/bk87pxgp8g0eqv0ksyub8azd4kkdbav0o6.png)
then, by substituting the given values, we get
![d^2_3=800^2_{}+1200^2-2\cdot800\cdot1200\cdot\cos 80](https://img.qammunity.org/2023/formulas/mathematics/college/t0cpogkvt2yckaa64lps2aht5xtnfck3gm.png)
which gives
![\begin{gathered} d^2_3=640000+1440000-333404.50 \\ d^2_3=1746595.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jkhvssxchij7qmkchvkqzh97r67l4l9b0u.png)
then, the distance_3 is
![\begin{gathered} d^{}_3=\sqrt[]{1746595.5} \\ d_3=1321.588 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5u1aoyec29l5lp98ilrswnotdokd95axnq.png)
Now, in order to obtain angle theta, we can use the law of sines as follows,
![(\sin\theta)/(d_1)=(\sin80)/(d_3)](https://img.qammunity.org/2023/formulas/mathematics/college/x0jr8k8bfphleif9kwm6geiabeikbfpdvi.png)
Then, we have
![\sin \theta=(\sin80)/(d_3)\cdot d_1](https://img.qammunity.org/2023/formulas/mathematics/college/iznedfuvipbnmjqscpa086q71zs1q9nsz2.png)
By substituting the given values, we get
![\begin{gathered} \sin \theta=(0.9848)/(1321.588)\cdot800 \\ \\ \sin \theta=0.5961 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/us1ijgxh3n6x7efpndezafqgzit7rounab.png)
so, we obtain
![\begin{gathered} \theta=\sin ^(-1)(0.5961) \\ \theta=36.59 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vj0qt6npobchrpgd4ilfju2zsn7oeso7wj.png)
Now, lets find the bearing angle for the return flight:
From the picture, we can see that the bearing angle is 180+60 = 240 degrees.
How far is the airplane from SeaTac and what would be the bearing for the return flight?
The plane is at a distance of 1321.588 miles from the SeaTac and with a bearing angle of 240 degrees from the north line.