216k views
4 votes
Given that sin A = -4 over 5 and angle A is in quadrant 3,what is the value of sin (2A)

User Dwyane
by
8.6k points

1 Answer

1 vote

SOLUTION:

Case: Trigonometry (Quadrants)

Given:


\begin{gathered} sinA=\text{ -}(4)/(5) \\ In\text{ quadrant 3} \end{gathered}

Required:

Find sin (2A)

Method:

Step 1: First we find the acute angle A, that sinA = 4/5


\begin{gathered} sinA=\frac{\text{ 4}}{5} \\ A=\text{ }\sin^(-1)((4)/(5)) \\ A=\text{ 53.13} \end{gathered}

From here,

CosA is:


\begin{gathered} cosA=\text{ }(adj)/(hyp) \\ using\text{ the 3-4-5 pythagoras rule, adj=3} \\ cosA=\text{ }(3)/(5) \end{gathered}

Step 2: Rotate the angle into the 3rd quadrant

A*= 53.13 + 180

A*= 233.13.

Step 3: Sin (2A)


\begin{gathered} sin(2A)=\text{ 2sinAcosA} \\ sin(2A)=\text{ 2}*\text{\lparen}(-4)/(5)\text{\rparen}*(\frac{\text{-3}}{5}\text{\rparen} \\ sin(2A)=\frac{\text{ 24}}{25} \end{gathered}

Final answer:

The value of sin(2A)= 24/25

User PawelC
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories