The perimeter is the sum of all the sides of a geometric figure. To find the perimeter of this figure you can add the straight sides and then add the perimeter of a circle with a radius equal to 2.
Then, you have
![\begin{gathered} \text{ Perimeter of the region }=2in+6in+2in+6in+\text{ Perimeter of the circle} \\ \text{ Perimeter of the region }=16in+\text{ Perimeter of the circle} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6zp6y6n4ibry9up0k03koudp0cs6xivopa.png)
The formula to find the perimeter of a circle is
![\begin{gathered} \text{Perimeter of the circle }=2\pi r \\ \text{Where r is the radius of the circle} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b728x466w4dk75gs3e7bf9alm9pz9hto2z.png)
So,
![\begin{gathered} \text{Perimeter of the circle }=2\pi r \\ \text{Perimeter of the circle }=2\pi\cdot2in \\ \text{Perimeter of the circle }=12.57in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2ae9t9kc9oi3kbxs69q58qb4wrbiklefsi.png)
Finally, the perimeter of the region will be 28.57 inches.
![\begin{gathered} \text{ Perimeter of the region }=16in+\text{ Perimeter of the circle} \\ \text{ Perimeter of the region }=16in+12.57in \\ \text{ Perimeter of the region }=28.57in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mgsueorpsb0031jzm58q6raipj1xbqq4bv.png)