Let's simplify each expression shown in the exercise:
Option a
Given:
![x^3\cdot x^(-3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xpeqq6s1ijvzlxik4y7c40yoe5itw19n29.png)
You can apply the Product of powers property. This states the following:
![b^n\cdot b^m=b^((n+m))](https://img.qammunity.org/2023/formulas/mathematics/high-school/u6jof7k89t8mbkltk32r72fhnydw44wlpk.png)
Where "b" is the base and "n" and "m" are exponents.
Then, you get:
![x^3\cdot x^(-3)=x^((3+(-3)))=x^((3-3))=x^0](https://img.qammunity.org/2023/formulas/mathematics/high-school/pjg1jft0pcs95l9sj5x3dzeuobl56dubx7.png)
By definition:
![b^0=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/aqrwbmovo49y0y6p6wzvvio2d5m3980rp0.png)
Therefore:
![x^0=1](https://img.qammunity.org/2023/formulas/mathematics/college/a3z2divl66mj9ucef6d0p6gwhbtgma17ph.png)
The expression given in Option a is equal to 1.
Option b
Knowing that any number or expression with exponent zero is equal to 1, you get that:
![1001^0=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/u1zig78mmbv00hnyfdlhp0q9b0vw4qlerc.png)
The expression given in Option b is equal to 1.
Option c
Given:
![(a^2b)/(ba^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fj4psf2efvpacd6347vinus5ss6v3a44eo.png)
You can notice that the numerator and the denominator are equal, then:
![(a^2b)/(ba^2)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/w0jk1pvopnnapf0f236mnayi0efnmebj6i.png)
The expression given in Option c is equal to 1.
Option d
Given:
![(y^2)/(y^(-2))](https://img.qammunity.org/2023/formulas/mathematics/high-school/ldfvgjb9t8gml3gju138gtan2tsw8pjfjx.png)
You can simplify it using the Quotient of powers property, which states that:
![(b^m)/(b^n)=b^((m-n))](https://img.qammunity.org/2023/formulas/mathematics/high-school/cojnkgurg96wrpo6gbfwwp69qqqm969w2r.png)
Then, you get:
![y^((2-(-2)))=y^((2+2))=y^4](https://img.qammunity.org/2023/formulas/mathematics/high-school/mmejnrhhlk5nxtg56ctcqjck4ou8ulyw8i.png)
The expression given in Option d is not equal to 1.
The answer is: Option d.