72.1k views
1 vote
Find the area of a triangle with vertices A(8,6) B(20,1) and C (4,3)

Find the area of a triangle with vertices A(8,6) B(20,1) and C (4,3)-example-1

1 Answer

1 vote

Given the following vertices of the triangle ABC:


A\mleft(8,6\mright);B\mleft(20,1\mright);C\mleft(4,3\mright)

You can plot them on a Coordinate plane and Adraw the triangle. See the picture below:

You need to find the lengths AB, BC and AC. To do this, you can use the formula for calculate the distance between two points:


d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2_{}}

Then, substituting the corresponding coordinates into the formula and evaluating, you get:


\begin{gathered} AB=\sqrt[]{(20-8)^2+(1-6)^2}=13\text{ }units \\ \\ \\ BC=\sqrt[]{(4-20)^2+(3-1)^2}=2\sqrt[]{65}\text{ }units \\ \\ \\ AC=\sqrt[]{(4-8)^2+(3-6)^2}=5\text{ }units \end{gathered}

You know that you can calculate the area using Heron's formula:


A=\sqrt[]{s(s-a)(s-b)(s-c)}

Where "a", "b" and "c" are the lengths of the sides of the triangle and "s" is the semiperimeter.

Then, you can find the value of "s" as following:


\begin{gathered} s=\frac{13\text{ }units+2\sqrt[]{65}\text{ }units+5\text{ }units}{2} \\ \\ s\approx17.06\text{ }units \end{gathered}

Knowing that:


\begin{gathered} a=AB=13\text{ }units \\ b=BC=2\sqrt[]{65}\text{ }units\approx16.12\text{ }units \\ c=AC=5\text{ }units \end{gathered}

You can substitute values into the formula and then evaluate, in order to find the area of the triangle:


\begin{gathered} A=\sqrt[]{s(s-a)(s-b)(s-c)} \\ A=\sqrt[]{(17.06\text{ }units)(17.06\text{ }units-13units)(17.06\text{ }units-16.12\text{ }units)(17.06\text{ }units-5units)} \\ A=28.02\text{ }units^2 \end{gathered}

The answer is:


A=28.02\text{ }units^2

Find the area of a triangle with vertices A(8,6) B(20,1) and C (4,3)-example-1
User Jessyca
by
4.4k points