First, calculate the total number of votes
![151271+113122+47531+40856+13053=365833](https://img.qammunity.org/2023/formulas/mathematics/college/l6bu5r63j96cd89o3c4hb6uoafb2dtjtat.png)
Then, the majority of the votes is
![(365833)/(2)=182916.5\approx182917](https://img.qammunity.org/2023/formulas/mathematics/college/1ve5mg6tzyi0t0zsd2tiwgyfbdcjq9ef4y.png)
a) At least 182917 votes are needed to get a majority in the Electoral College.
Crawford's votes plus miscellaneous are equal to 53909.
Add them to Jackson's, Adam's, and Clay's to check whether they get a majority that way
![\begin{gathered} 151271+53909=205180\ge182917 \\ 113122+53909=167031<182917 \\ 47531+53909=101440<182917 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svunz9jrpplg2jhr06uyqlbqklg0n0gvpi.png)
Therefore, only Jackson could have won a majority of the votes.
b)
Calculate the number of extra votes Jackson needs to get a majority
![182917-151271=31646](https://img.qammunity.org/2023/formulas/mathematics/college/wp147bziwu0t2a9u7ip7y84y8fz2rmgn0p.png)
Then, calculate the percentage that 31646 represents if 182917 is 100%.
![\begin{gathered} (x)/(31646)=(100)/(182917) \\ \Rightarrow x\approx17.301 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vtbuw0ze288hcirfo92ogafnmoafdzop6m.png)
Thus, Jackson needs 17.3% of the votes.