Given the figure of the circle O
As shown, the radius of the circle = r = 9 cm
The measure of the central angle < AOB = 37°
We will find the area of the shaded sector
We will use the following formula:
![Area\text{ }of\text{ }the\text{ }sector=(\theta)/(360)*\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/cnr6qmoq93ns3lz85idxnsf48euhcqd2yt.png)
Substitute θ = 37°, and r = 9
So, the area of the sector will be:
![(37)/(360)*\pi *9^2=26.1537588\text{ }cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/vaatk7rjj7gsz4ss8xgtx80bq9pgg3180t.png)
Rounding to the nearest tenth
So, the answer will be: c. 26.2 cm²