Given
Make up a set of five data items.
The mean of a five data items is 4.
The median is 3.
To show that the answer is correct and to find the standard deviation of your data.
Step-by-step explanation:
Consider the five data items as, 1, 2, 3, 5, 9.
Then,
![\begin{gathered} \operatorname{mean}=(1+2+3+5+9)/(5) \\ =(20)/(5) \\ =4 \end{gathered}]()
Also,
![\operatorname{median}=3\text{ (}\because\text{ n=5 is odd)}]()
Hence, it is proved.
Therefore, the standard deviation is,
![\begin{gathered} \text{ Standard deviation}=\sqrt[]{(\frac{\sum ^{}_{}x^2}{n})-(\frac{\sum ^{}_{}x}{n})^2} \\ =\sqrt[]{((1^2+2^2+3^2+5^2+9^2)/(n))-(4)^2} \\ =\sqrt[]{(1+4+9+25+81)/(5)-16} \\ =\sqrt[]{(120)/(5)-16}_{} \\ =\sqrt[]{24-16} \\ =\sqrt[]{8} \\ =2\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8kkgg48f1eztdceqaot9uzays4g0d2fye8.png)
Hence, the standard deviation is
![2\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/k0mps5f0tog0w5nhu416lrrm8ypia8rqp8.png)