160k views
2 votes
13. Solve the system using the elimination method. x + 3y - z = 2x + y - z = 0 3x + 2y - 3z =-1

User Behzad
by
7.5k points

1 Answer

3 votes

We have the following:


\begin{gathered} x+3y-z=2 \\ x+y-z=0 \\ 3x+2y-3z=-1 \end{gathered}

solving for elimination:


\begin{bmatrix}{1} & {3} & -1 \\ {1} & {1} & {1} \\ {3} & {2} & {-3}\end{bmatrix}=\begin{aligned}2 \\ 0 \\ -1\end{aligned}

R1 <-> R3


\begin{bmatrix}{3} &amp; {2} &amp; -3 \\ {1} &amp; {1} &amp; {1} \\ {1} &amp; {3} &amp; {-1}\end{bmatrix}=\begin{aligned}-1 \\ 0 \\ 2\end{aligned}

R2 - 1/3*R1


\begin{bmatrix}{3} &amp; {2} &amp; -3 \\ {0} &amp; {(1)/(3)} &amp; {0} \\ {1} &amp; {3} &amp; {-1}\end{bmatrix}=\begin{aligned}-1 \\ (1)/(3) \\ 2\end{aligned}

R3 - 1/3 * R1


\begin{bmatrix}{3} &amp; {2} &amp; -3 \\ {0} &amp; {(1)/(3)} &amp; {0} \\ {0} &amp; {(7)/(3)} &amp; {0}\end{bmatrix}=\begin{aligned}-1 \\ (1)/(3) \\ (7)/(3)\end{aligned}

R2 <-> R3


\begin{bmatrix}{3} &amp; {2} &amp; -3 \\ {0} &amp; {(7)/(3)} &amp; {0} \\ {0} &amp; {(1)/(3)} &amp; {0}\end{bmatrix}=\begin{aligned}-1 \\ (7)/(3) \\ (1)/(3)\end{aligned}

R3 - 1/7*R2


\begin{bmatrix}{3} &amp; {2} &amp; -3 \\ {0} &amp; {(7)/(3)} &amp; {0} \\ {0} &amp; {0} &amp; {0}\end{bmatrix}=\begin{aligned}-1 \\ (7)/(3) \\ 0\end{aligned}

Zero row in reduced matrix indicates infinite solutions

User Amit Badheka
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.