20.2k views
4 votes
Solve the triangle. a=1, b=9, C=60 degrees Find the approximation of c≈A≈B≈

User Seunghee
by
5.0k points

1 Answer

4 votes

Use the cosine law to find the length of side c:


c^2=a^2+b^2-2ab\cos C
\begin{gathered} c^2=1^2+9^2-2(1)(9)\cos 60 \\ c^2=1+81-18\cos 60 \\ c^2=82-18\cos 60 \\ c^2=82-9 \\ c^2=73 \\ c=\sqrt[]{73} \\ c\approx8.54 \end{gathered}

Use the cosine law to find the measure of angles A or B:


\begin{gathered} \\ (\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c) \\ \\ To\text{ find angle A:} \\ (\sin A)/(a)=(\sin C)/(c) \\ \\ (\sin A)/(1)=\frac{\sin 60}{\sqrt[]{73}} \\ \\ \sin A=\frac{\sin 60}{\sqrt[]{73}} \\ \\ A=\sin ^(-1)(\frac{\sin60}{\sqrt[]{73}}) \\ \\ A\approx5.82º \end{gathered}

Solve the triangle. a=1, b=9, C=60 degrees Find the approximation of c≈A≈B≈-example-1
User Heartcroft
by
5.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.