20.2k views
4 votes
Solve the triangle. a=1, b=9, C=60 degrees Find the approximation of c≈A≈B≈

User Seunghee
by
7.9k points

1 Answer

4 votes

Use the cosine law to find the length of side c:


c^2=a^2+b^2-2ab\cos C
\begin{gathered} c^2=1^2+9^2-2(1)(9)\cos 60 \\ c^2=1+81-18\cos 60 \\ c^2=82-18\cos 60 \\ c^2=82-9 \\ c^2=73 \\ c=\sqrt[]{73} \\ c\approx8.54 \end{gathered}

Use the cosine law to find the measure of angles A or B:


\begin{gathered} \\ (\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c) \\ \\ To\text{ find angle A:} \\ (\sin A)/(a)=(\sin C)/(c) \\ \\ (\sin A)/(1)=\frac{\sin 60}{\sqrt[]{73}} \\ \\ \sin A=\frac{\sin 60}{\sqrt[]{73}} \\ \\ A=\sin ^(-1)(\frac{\sin60}{\sqrt[]{73}}) \\ \\ A\approx5.82º \end{gathered}

Solve the triangle. a=1, b=9, C=60 degrees Find the approximation of c≈A≈B≈-example-1
User Heartcroft
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories